Environmental change and management
Geographies of human wellbeing
The geographer's toolkit

Geography is the study of the places that make up the world around us. Geographers are interested in how human activities and natural processes change the Earth's places, as well as the links between these places. More than ever before, geographers help other people understand how change affects people and places and how this change can be managed.

Geographers have a sense of wonder and curiosity about the world and this leads them to ask questions about what they see and experience. When looking at this photograph of Mount Kilimanjaro in Africa, for example, a geographer would ask questions like these:

- What process formed this mountain peak?
- How can there be snow so close to the equator?
- How does this mountain affect the surrounding region?
- Are Mount Kilimanjaro's glaciers becoming smaller or larger?
- Is this a hazardous place? Could this mountain erupt?
- What impact are people having on the forests and soils of this place?
- Why is the ground so dry?

Geographers use a range of key concepts and skills to answer such questions. Each of these concepts and skills is a tool that you can use to better understand your world. As you master each of these concepts and skills you will gradually fill your toolkit with a range of useful geographical tools. These will help you better understand this amazing planet.

Welcome to the wonderful world of geography!
GT.1 Concepts for developing geographical understanding

Geographers use seven key concepts to help investigate and understand the world. These concepts provide a framework to thinking geographically and will help guide you through every geographic inquiry. At times you will use several of these concepts at once, while at other times you may focus on just one. The seven key concepts in geography are:

- place
- sustainability
- scale
- environment
- space
- change
- interconnection

Place
A place is a part of the Earth’s surface that is identified and given meaning by people. For example, the Serengeti – which is a vast ecosystem in Africa – is a place. It is famous for its enormous plains filled with a range of wildlife. Places aren’t defined by size, however. They can be very large, like a whole continent, or small, like a corner of a library. Your home and school are important places for you, because they are places where you live and spend a lot of time.

Places can be natural (that is, shaped by the environment and largely unchanged by humans), or built (that is, constructed by humans). Each place is unique, with its own set of characteristics.

The life of every person and animal on Earth is influenced by place. Places determine our relationships with one another. Our closest relationships are likely to be with people in places that are physically near.

The environmental and social qualities of a place all influence the way we live. Climate, landscapes, types of plants and resources, transport networks, entertainment venues and workplaces all have a major impact on our daily lives.

Geographers use the concept of place when they investigate what a place is like, and when they look for explanations for what they see. For example, a geographer visiting Namche Bazaar near Mount Everest (see Source GT.2) would be interested in the forces that have shaped these mountains. They would look for clues and begin to ask questions, much like a detective. Why are the sides of the mountains so steep? Why are the highest mountain peaks in a line? Why are there stripes in the mountain peaks? By seeking answers to these questions the geographer is aiming to explain, not just describe, a place.

Geographers use the concept of place when conducting any geographical inquiry. For example, a geographer visiting Namche Bazaar would use the concept of place to help understand why people choose to live in this challenging environment and how they overcome these challenges. They would also investigate the ways people have altered this environment, and assess the environmental and social impacts of these changes.

Space
To most people, space means the empty universe, but to a geographer it has a different meaning. Geographers use the key concept of space when investigating the way that things are arranged on the Earth’s surface. They also investigate the ways people use and change the places in which they live.

Geographers look for patterns in the way features and structures are arranged, and the concept of space helps them to do this. It has three main elements:

- location – where things are located on the Earth’s surface
- organisation – how and why things are arranged and managed on the Earth’s surface by people
- spatial distribution – the shapes and patterns in which things are arranged on the Earth’s surface.

At first, you may find you confuse the concepts of place and space, as people often use the words interchangeably. To a geographer, however, the concepts of place and space are quite separate. It may help you to remember that places can be divided and organised into spaces. Spaces also are assigned with different purposes.

For example, a place like your school is organised into different spaces, each with its own purpose. There are spaces for learning, spaces for sports and spaces for entertainment – all with their own function.

Understanding of the location, patterns and planning of spaces helps geographers to make sense of our world. Geographers would look at a photograph like this one of New York City (see Source GT.3) and might examine it by using the key concept of space in the following terms:

- location – they would observe that Manhattan Island is located in the mouth of the Hudson river and that land is limited. Clearly, there is an open space in the centre of the city. Geographers might identify that it has been designated as a space for recreation and enjoying nature. They may ask questions like, How big is the park? When was it established?
- organisation – they would conclude that there are many tall buildings in a confined area. Were the buildings constructed around a set perimeter, after the park was established? Are the buildings mainly used for business or housing purposes?
- spatial distribution – geographers might investigate how many buildings there are per square kilometre, how sparsely or densely they are situated from each other, and how sparsely or densely they are populated.

Further investigation would reveal that there is a complex network of bridges, ferries, subways and walkways that link the island to surrounding areas. In fact, Manhattan Island in New York is one of the most densely populated places on Earth, with more than 26,000 people living in every square kilometre! New Yorkers would perceive and use the space around them in quite a different way from someone living on a huge block in an outer suburban area.

Geographers also investigate the ways that people use and change the space in which they live. They recognise that different groups of people use space in different ways and that this changes over time. By examining, researching and describing how spaces are used, geographers can further our understanding of the world and help manage it into the future.
Environment

You will have heard people talk about ‘the environment’ and probably studied aspects of the environment before. In geographical terms, the key concept of environment means the living and non-living components and elements that make up an area, and the ways they are organised into a system.

Geographers are interested in investigating and describing the relationships between people and the environment. In particular they examine:

- the ways in which different groups of people perceive and use the natural environment and why these perceptions differ
- the ways in which people change the environment and how these changes can be managed
- the impact of environmental hazards on people and how the impacts of these hazards can be reduced

The world in which we live is made up of many different environments. Some environments are natural (or physical) such as deserts, grasslands, mountains, coral reefs, forests, oceans and ice caps. The natural environment provides us with basic resources for living such as food, water and clean air. Natural processes such as tectonic plate movement, erosion and weathering have formed these environments over millions of years. In order for an environment to be considered natural its soils, rocks, climate, plants and animals must remain largely untouched by humans. Today there are very few natural environments left on Earth.

The Australian World Heritage listed Heard Island and McDonald Islands are an outstanding example of pristine natural environments with no introduced animals or plant species, and no human impact.

Other environments have been so changed by humans – largely for settlement and economic activity – that very few natural features remain. These are known as built (or human) environments and include large cities, towns, suburbs and areas of farmland. For example, mountainous land in the Philippines has been transformed into terraced pond fields for rice farming by skilfully following the natural contours of the land.

Researching an environment also allows geographers to evaluate how people can best interconnect with that environment, and identify potential risks for people interacting with that environment. For example, examining the landscape and height, as well as the ascent routes of Mount Kilimanjaro (see Source GT.4) in Tanzania allows prospective travellers to know that, unlike with Mount Everest, they don’t need to bring additional oxygen for their climb, but they do need to follow one of six official routes.

The study of different environments helps geographers to better understand and appreciate natural processes, such as how weather works, how mountains are formed and how rainforests and coral reefs grow. The concept helps geographers to analyse the changes humans make to natural environments and better appreciate their impact so that they can be managed more wisely.

Source GT.4 Mount Kilimanjaro is a popular place for climbers to interact with the natural environment.

Interconnection

Nothing on Earth exists in isolation. All environments and every living and non-living thing are connected. Geographers use this concept of interconnection to better understand the links between places and people, and how these interconnections affect the environment and the way we live. These connections can be on a local level or a global level.

Natural processes link places and people. For example, the water cycle links the water in the oceans with the land. When it brings rain to inland areas, water flows across the land and into rivers and streams. Farmers rely on this natural link to provide the water they need to grow food.

Links between places and people can affect the way people live. In turn, the way people live can potentially damage crops that are being grown there, or the changed conditions may benefit farmers.

Human activities such as the movement of people, the production and trade of goods, and the flow of money within and between different countries also link places and people. Interconnection through electronic means such as mobile phone and Internet is now a part of everyday life for many of us.

Being consumers in a global marketplace also means we are connected to many places via international trade. More than 3000 ships carrying 2 million containers pass through the Port of Melbourne (see Source GT.5) each year. These ships and the goods they carry link dozens of countries around the world.

Source GT.5 A container ship prepares to berth at the Port of Melbourne.
Sustainability

The concept of sustainability relates to the ongoing capacity of the Earth to maintain all life. This means developing ways to ensure the Earth’s resources are used and managed responsibly so they can be maintained for future generations.

Sustainable patterns of living meet the needs of the current generations without compromising the ability of future generations to meet their own needs. Many of the world’s resources (such as oil, coal and natural gas) are non-renewable. This means that if we continue to use them they will one day run out. Other resources (such as wind, forests, solar and water) are renewable. This means that they replace themselves naturally, or can be replaced to meet the needs of society.

Sustainability encourages us to think more carefully about these different types of resources – the ways in which they are formed and the speed at which they are used. It also encourages us to look more closely at renewable options and take greater care of the Earth. Actions to improve sustainability can operate at a number of levels:

- local – recycling of paper by individuals, schools and households reduces the number of trees that need to be cut down
- national – in Australia, the government has begun to encourage sustainable use of energy by offering incentives to promote the use of solar panels
- international – organisations such as the Marine Stewardship Council (MSC) are working with fisheries and retailers to promote responsible and environmentally viable fishing practices around the world.

There can be debate surrounding the sustainability of an environment, as people or organisations with different interests may put forward different points of view. A tree-logging company may protest that their practices are sustainable because they re-plant as many as they cut down. On the other hand, a conservation group may be equally convinced that a forest cannot be sustained when its trees are cut down. New trees may take decades to grow, in which time the ecosystem will have been altered. Many underdeveloped countries, such as Myanmar (Burma) (see Source GT.6), face enormous challenges controlling and monitoring forest clearance.

Sustainability is an important concept for geographers. They use it to investigate how natural and human systems work, and understand how resources can be managed in such a way that they will be sustained into the future.

Scale

The concept of scale is used to guide geographical inquiries. Geographers study things that take place on many different spatial levels – meaning from small areas (such as a local park) to very large areas (such as the use of oil and gas all over the world). They use the concept of scale to look for explanations and outcomes at different levels. For example, a geographic inquiry on climate change may be carried out at a range of scales (from smallest to largest) (see Source GT.7):

- local – such as an inquiry into increased electricity use (for air conditioning) in your neighbourhood due to higher than average temperatures. Increased energy consumption may result in power outages.
- regional – such as inquiry into coral bleaching on the Great Barrier Reef (see Source GT.8). Warming ocean temperatures can trigger coral bleaching often resulting in coral death.
- national – such as an inquiry into changing weather patterns and increased frequency of extreme weather events in Australia. This affects government allocation of resources across many sectors (water security, agriculture, emergency services, coastal communities and infrastructure).
- international – such as inquiry into drought in Africa. Rains have become less reliable in many places as the climate has changed and many African nations have been hit by a series of devastating droughts that have brought widespread hunger and starvation.
- global – such as an inquiry into the reduction in Arctic sea ice due to global warming. This reduction in white ice means that less of the Sun’s energy is reflected back into space and more is absorbed into the earth and sea, resulting in further increases in temperatures globally.

Some geographic studies investigate a large area. For example, something that affects a whole country, such as a severe drought, would involve a study at the national scale. If an event or phenomenon affects the whole world, such as climate change and rising sea levels, it would be examined at the global scale. It may be necessary to use different scales when studying the same thing. For example, as mentioned above, climate change is occurring globally and should be examined at the global scale.

However, it can be examined at other scales too.

Source GT.7 Geographical inquiries can be carried out on a number of different scale levels.

<table>
<thead>
<tr>
<th>Scale</th>
<th>Example of climate change inquiry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local scale</td>
<td>Electricity consumption in your neighbourhood (increase use of air conditioning)</td>
</tr>
<tr>
<td>Regional scale</td>
<td>Coral bleaching on the Great Barrier Reef</td>
</tr>
<tr>
<td>National scale</td>
<td>Frequency of extreme weather events across Australia</td>
</tr>
<tr>
<td>Global scale</td>
<td>Reduction in Arctic sea ice; rising temperatures throughout the world</td>
</tr>
</tbody>
</table>

Source GT.8 The Great Barrier Reef off the coast of Queensland is the world’s largest coral reef system. A geographical inquiry of the reef could be undertaken at a range of scales.
Change

The Earth is constantly changing. Some changes occur very rapidly and are easy to observe, while others take place over millions of years and are almost undetectable to us.

The concept of change is important in geography because it helps us to understand what is happening around us and to see the world as a dynamic place. Change in both time and space allows geographers to examine how environments develop, transform or disappear.

Change can be the result of natural forces. For example, the Earth has been shaped and changed by climate, earthquakes, volcanoes and running water over millions of years. It can also be the result of human activity, such as the building of a new bridge or clearing of forest for farmland.

Changes also take place on many levels, from local through to global. Local changes that happen quickly, such as storm damage in your street, are easy to observe and explain. Regional or national changes resulting from a bushfire or an earthquake can also happen quickly and their effects can be widespread, with devastating impacts on places and people.

Changes that take place on a global scale can take much longer. Global warming, for example, is a long-term change that happens slowly. Global warming has widespread and long-term effects that are not easily explained.

Observing and understanding changes that are natural and have occurred over time or changes that have been made by humans over time, is an important part of any geographical inquiry. Geographers need to look at different types of changes, why they have occurred, over what time period they have occurred and what further changes may take place as a result.

Sometimes changes can be positive, such as the regeneration of vegetation, while other changes can have negative consequences, such as the pollution of waterways from industry. Geographers play an important role in ensuring that change is managed in a sustainable way.
GT.2 Geographical inquiry and skills

Geographers are investigators. They explore the world around them by asking questions about what they see. These questions begin an investigation that requires them to collect and analyse information and to communicate what they have discovered. To complete an investigation they need a set of skills such as drawing maps and cross-sections, surveying, sketching and presenting information. Five sets of skills are used to complete a full geographical inquiry. These are listed in Source GT.11.

To become a better geographer you should try to learn new skills as you continue to practice, use and develop the skills you have already learned. It might help you to think of each of these skills as individual tools in your toolkit. For some geographical inquiries, you may only need to use one tool; for others, you may need to use many. As you develop each new skill you will have gained another important tool in explaining the natural processes and human activities that shape our amazing planet.

Observing, questioning and planning
Observe the world and its geographical characteristics
Understanding our world begins by observing the processes that are taking place all around us. Geographers look at people, land, air, water, plants and animals and the connections between them to understand what is happening. They also seek to investigate where, why and how natural, managed and constructed environments are formed and changed. These observations often include identifying any problems or issues that need to be investigated and resolved.

Collecting, recording, evaluating and representing

Observing, questioning and planning

Collecting, recording, evaluating and representing

Interpreting, analysing and concluding

Interpreting, analysing and concluding

Communicating

Reflecting and responding

Developing geographical questions

One of your greatest assets as a geographer is curiosity. Geographers look at the world around them and ask questions about what they see, experience or have thought about. You may, for example, see a news item about a volcano eruption or hear a report about the world’s most liveable cities. Or you may visit the centre of a large city on a field trip or a national park on holiday. As you begin to think like a geographer you will begin to ask questions about these events and places and these questions may be the starting point for a geographical inquiry.

Developing geographical questions

This question opens up a whole new area to explore, because the answer to that question will lead on to further questions and greater depth of understanding. Some other example questions are:

- Is this a volcano?
- Why is it green on the ground but there is snow on the mountain?
- Are the animals all eating the same things?
- Is there more or less snow than in the past?
- How should people best manage this change?

Apply the skill

1 Why is ‘Does the amount of snow on the mountain change over time?’ a better geographical question than ‘How much snow is there on the mountain?’?
2 Examine Source GT.6, which shows forest clearing in Myanmar. Work with a partner to develop a set of geographical questions about this place.
3 Where could you begin to find the answers to your questions?

Developing geographical questions

One of your greatest assets as a geographer is curiosity. Geographers look at the world around them and ask questions about what they see, experience or have thought about. You may, for example, see a news item about a volcano eruption or hear a report about the world’s most liveable cities. Or you may visit the centre of a large city on a field trip or a national park on holiday. As you begin to think like a geographer you will begin to ask questions about these events and places and these questions may be the starting point for a geographical inquiry.

Developing geographical questions

This question opens up a whole new area to explore, because the answer to that question will lead on to further questions and greater depth of understanding. Some other example questions are:

- Is this a volcano?
- Why is it green on the ground but there is snow on the mountain?
- Are the animals all eating the same things?
- Is there more or less snow than in the past?
- How should people best manage this change?

Apply the skill

1 Why is ‘Does the amount of snow on the mountain change over time?’ a better geographical question than ‘How much snow is there on the mountain?’?
2 Examine Source GT.6, which shows forest clearing in Myanmar. Work with a partner to develop a set of geographical questions about this place.
3 Where could you begin to find the answers to your questions?
Plan a geographical inquiry

Asking geographical questions is a good way to develop a range of possibilities for further research and investigation. It is usually best to narrow your investigation by selecting one of the geographical questions you have written as the basis for your inquiry. You should select a question in which you are interested and helps you to better understand the environment you are investigating.

Source GT.13 Planning is a key stage in conducting a geographical inquiry.

Planning an inquiry about Mount Kilimanjaro

Having chosen to investigate the key geographical question ‘How does this mountain affect the climate?’, it is time to consider what information you need to answer this question and where you are going to locate the information. A good way to do this is to use a planning table like the one below.

Check your learning GT.2

Remember and understand

1. What are the five stages of a full geographical inquiry? Imagine that while watching the news on television this evening you see an item about a large earthquake in China. Imagine that while watching the news on television this evening you see an item about a large earthquake in China.
 - a. How could this news item be the beginning of a geographical inquiry?
 - b. Develop a series of geographical questions about this earthquake to guide a geographical inquiry.

Apply and analyse

3. Use the geographical questions that you have written to develop a planning table similar to the one shown here for Mount Kilimanjaro (see Source GT.13).

Evaluate and create

4. Bring a copy of your local newspaper to class. Search through the newspaper, or think about your local area and identify examples of stories or issues that could be investigated as part of a geographical inquiry. Examples may include a shopping centre extension, or a problem for a new set of traffic lights or a pedestrian crossing. Choose one local issue and work with a partner to develop a series of geographical questions about it. Then complete a planning table to assist a possible geographical inquiry.

Source GT.14 Mount Kilimanjaro in Africa

Collecting, recording, evaluating and representing

Collect, record and evaluate primary and secondary data

Good planning and preparation will ensure that your geographical inquiry will run smoothly, be relevant and give you the answers you are looking for. Once you have identified the issue, formulate your key inquiry question. You can conduct sound, useful inquiry by following these steps:

- **Collect and record the information: you think you will need to answer your key inquiry question**
- **Evaluate this information to determine that it is accurate and relevant**
- **Represent your findings in an interesting and appropriate way (such as tables, graphs, maps and sketches)**

1. **Geographers find answers to their questions in many places. They may collect information themselves by interviewing people, taking photographs, making sketches out in the field or conducting surveys and questionnaires. This kind of information will generally only be relevant to a particular inquiry and is called primary data.**

2. **Often a geographer collects information that supports his or her inquiry but has not been specifically collected or designed by the geographer for the inquiry. This type of information is called secondary data. Secondary data sources include maps, graphs, statistics, and websites that someone else has developed. One of the best secondary sources of information may be photographs from newspapers and magazines, and satellite images from Google Earth. It is important to always evaluate any secondary data for reliability, relevance and bias. This is particularly true for information obtained through the Internet. Unlike a printed source such as a book or atlas it can be very difficult to establish who has written and published information online.**

Reliability

When undertaking an inquiry, geographers need to evaluate the sources they use for reliability and potential bias, as well as usefulness. In the case of collecting data from primary sources, such as interviewing subjects directly on a topic, the information gathered will be reliable because it is gathered first-hand. It is therefore important for the geographer to keep in mind any potential bias that may be influencing an interview subject’s response. An interview that a geographer is conducting on the potential effects of turning local parkland into an industrial park, for instance, would have very different responses from a representative of the industrial developer than from a member of a local wildlife conservation group. It is important for a geographer to evaluate this kind of bias, and remember to ask questions about the motivation behind it.

When selecting secondary sources, such as maps, graphs, photographs or other data, the geographer also needs to ensure the data is reliable and unbiased. This includes evaluating the creator of the data – is the data from a recognised source like a government body, such as the Bureau of Meteorology or a research agency like the CSIRO? Is the data provided without bias? Or is it presented on a website for a company that might have a vested interest in influencing public opinion?

Ethics in geography

When conducting research and obtaining data for an inquiry, it is important for a geographer to be mindful of issues that are likely to raise ethical concerns. This may include being aware of privacy concerns, ensuring anonymity if required, and obtaining informed consent from research participants. Geographers may also need to outline where and how the information obtained will be used or published, and special attention may need to be given for relational data where geographical references or co-ordinates might disclose a participant’s location or identity.

If geographers undertake an inquiry that involves consulting with Aboriginal and Torres Strait Islander people they should be aware that there are guidelines and protocols that should be followed. While these are not necessarily rules, it is important to know that Aboriginal and Torres Strait Islander people have distinctive regional and cultural identities that require respectful consideration for meaningful consultation. This may involve preferred terminology, cues for cultural communication, and other means for making consultation harmonious and productive. If conducting such an inquiry, it is advisable to do further reading, such as of the Aboriginal and Torres Strait Islander Peoples Engagement Toolkit, which can be found online.
Evaluating and representing geographical data visually

Geographers present the information they gather during their inquiries in a number of different ways. They make maps, create graphs and tables or even draw diagrams to help them look for patterns in the data they have gathered. These tools help geographers analyse and interpret the information they have gathered, and also present the information to other people (the general public, the government, the media) and help them understand the geographer’s findings.

Maps

One of the most useful tools that geographers use to process information is a map. A map is a simplified plan of an area. Maps are drawn in the plan view (directly from above) because this ensures the scale will be the same across the entire area. If maps were drawn from an angle, some parts of the mapped area would look distorted and so it would not be an accurate representation of the area. When properly used, maps can reveal a great deal about our planet and the ways in which we use it.

Evaluating the reliability of websites

There is an enormous amount of material available online, but it is important to keep in mind that not all websites provide reliable information. You must be careful not to naively accept that all information published online is from a reliable source. Websites should be critically evaluated for reliability by following these steps:

Step 1 Find out how old the information is. When was it first published? This will help you decide whether it is useful for your inquiry or not.

Step 2 Find out who published the information. Is it possible they have a bias? You can often find out more about the organisation publishing information by going to their ‘home’ page or ‘about us’ page.

Step 3 Look at the extension at the end of the website address, as this gives you an important clue about the origin of the information. For example .com is used by commercial organisations such as online stores, .org is used by non-commercial organisations such as NGOs and welfare groups, .gov by government departments, .edu refers to schools and universities, .biz by businesses and .mil by military groups.

Step 4 If you cannot find out when the information was published or who published it, it is probably too unreliable to use in a geographical inquiry. Look for a more reliable source of information.

Apply the skill

1. Common websites used for reference information include the CIA World Factbook, the Australian Bureau of Statistics, National Geographic and the United Nations Development Programme. Using the steps listed above, assess the reliability of the data found on these websites.

Source GT.15 This web page offers data about Tanzania. How can you determine if it contains reliable information?

Source GT.16 Common contour patterns
Digital maps and terrain models

There are about 6000 man-made satellites orbiting the Earth. Many of these collect digital data about the shape and height of the land and transmit it back to computers on the ground. This data is then interpreted and can be used to draw maps. Cartographers can use computer programs to add colour to these digital maps to highlight certain aspects of the environment. In Source GT.17, for example, the land has been shaded according to its height. The data can also be manipulated in other ways. In Source GT.18 it has been used to create a side view of the landform being mapped. This type of illustration is known as a digital terrain model.

Cartograms

You will have already seen cartograms in the course of your geography studies. These are the maps that look distorted and have areas that appear thinner or more enlarged than they would normally be, depending on what they are showing. Cartograms are sometimes called ‘value by area’ maps, which means the spaces on the maps are distorted to show a representation of a value rather than land area.

For example, while Vietnam is a relatively small country in terms of land area, it is the fifth largest rice growing country, so it would be exaggerated to a much greater relative size. The United States of America, which actually has a much larger land mass than Vietnam, is the 10th largest rice producer, so would appear much smaller than actual size on a cartogram.

There are various software programs available that can generate cartograms.

Graphs

In Years 7 and 8 you will have learned how to create and interpret simple graphs, such as bar graphs, column graphs and pie charts. In Years 9 and 10 you will be working with more complex graphs. You won’t necessarily be creating these kinds of graphs yourself, but you will be learning how to interpret them and make sense of the information they provide. Some of these styles of complex graphs are described below.

Climate graphs

Climate graphs show the general climate of a place – what the weather is like overall in a certain location, graphing the average monthly temperature and rainfall over the course of a year (or other set period of time) (see Source GT.20). Climate graphs combine line and column graphs. Temperature is recorded as a line graph and rainfall is recorded as a bar graph.

Compound column graphs

A compound column graph, sometimes called a stacked column graph or stacked bar graph, is used by geographers to compare the parts of something to the whole. They are a more complex type of column graph in which each column is split into sections. The results are then stacked on top of each other, in different colours or different shades of a colour, so that results can be easily compared (see Source GT.21).

Each column in a compound column graph represents a total, and each different coloured segment represents a part that makes up that total. The graph in Source GT.21, for example, shows the total increase in world population, from 1950 projected up to 2050. Of the total increase in population, it is immediately clear that Asia, coloured light purple, has experienced and will continue to experience the greatest growth. It is also immediately clear that Oceania, coloured red, has experienced very small population growth in comparison. Presenting the information in this way means we can quickly see and compare a number of figures that contribute to a total.
Population pyramids

Population pyramids are horizontal bar graphs that show the proportion of males and females in different age groups in a population. They can be used in a number of ways. Most commonly, they are used to compare the population structures and growth rates of different countries. A triangular-shaped graph shows a population with a high birth rate – that is, the population in that country is growing – while a graph that tapers in (is narrower) at the younger ages indicates a population that is contracting or declining (see Source GT.22).

![Population pyramids showing growing (left) and contracting (declining) (right) populations](source)

Population pyramids can also help geographers to identify the ways in which the population in a single country is changing over time. In these population pyramids of Australia’s population, for example, it is clear that the percentage of Australia’s population over the age of 65 increased between 1960 (see Source GT.23) and 2009 (see Source GT.24). Geographers describe this change as the ageing of the population. Population pyramids can also help geographers to identify the ways in which the population in a single country is changing over time. In these population pyramids of Australia’s population, for example, it is clear that the percentage of Australia’s population over the age of 65 increased between 1960 (see Source GT.23) and 2009 (see Source GT.24). Geographers describe this change as the ageing of the population.

Scatter plots

Maps can be useful for showing a pattern but they don’t really explain that pattern. A special type of graph, called a scatter plot, is a better way of doing this. A scatter plot compares two sets of data in a visual way so that connections between them can be easily seen. Scatter plots are called scattergrams. The following scatter plot compares the amount of original forest cover remaining in selected Asian countries with their population growth rates. It is essentially testing the theory that forests are more endangered in countries where the population is growing rapidly. Because most of the countries lie close to the trend line in this graph it is possible to say that there is a relationship between the amount of forest in a country and the rate at which its population is growing. Countries with the fastest growing populations have the most forest remaining. Those countries that lie apart from the general trend such as Bangladesh are called outliers. A geographer studying this graph might use it as the beginning of a geographical inquiry into deforestation in Bangladesh.

![A scatter plot showing remaining forest and the population growth rate](source)

Check your learning GT.3

Remember and understand

1. Why is a website that ends with .edu more reliable than one that ends with .com?
2. What advantages do scatter plots have over maps?
3. What do population pyramids show? Why are they a useful tool for geographers?
4. Examine Source GT.25. In which of these countries is the population increasing most rapidly? How much original forest cover remains in this country?
5. What is the difference between primary sources and secondary sources of information? Is the CIA Factbook (see Source GT.15) an example of a primary or secondary source?

Apply and analyse

6. Using Source GT.17, describe the terrain of the region surrounding Mount Kilimanjaro. Do you think Source GT.17 is more useful for this task than Source GT.18? Why?
7. Describe the differences between the population pyramids in Sources GT.23 and GT.24. What do these differences reveal about the populations at these points in time?
8. Evaluate and create

 - Using Source GT.16, describe the landscape shown. Use Source GT.16 as a guide to common contour patterns.
 - Research the size of the population of a country other than Australia over a 10-year period. Create a graph or graphs to present your findings.

![Population growth rate compared to remaining original forest](source)
Other graphic representations

In addition to maps and graphs, geographers use a range of other visual representations to communicate information they have collected. These include geographic diagrams, sketches, tables, geographic photographs and geographic information systems (GIS). These ways of presenting information allow geographers to communicate their findings in the most clear and appropriate manner.

Geographical diagrams

Geographical diagrams are simplified drawings of the real world. They allow geographers to show the features or characteristics of places or things much more directly than describing them in words. Certain interesting or complex processes can also be easily explained and demonstrated in a diagram, and communicated quickly and effectively by simple visual representation (see Source GT.26).

![Geographical diagrams](geo_diagram.jpg)

Source GT.26 This diagram shows the dramatic rate at which snows have melted on Mount Kilimanjaro.

Geographical sketches

A geographical sketch can be an extremely useful way of collecting information and presenting it in a straightforward and immediate way. They are often completed in the field (and are known as field sketches) or are sketched from photographs. The aim of a geographical sketch is to focus on those parts of the environment that are relevant to the current geographical inquiry. For example, a geographer studying the role of waves in the erosion of a coastline would sketch the rocks and landforms of a beach, while another geographer studying tourism at the coast would sketch the buildings and roads at the same beach. Sketches allow the geographer to simplify information to make it easier to understand.

![Geographical sketches](geo_sketches.jpg)

Source GT.28 Field sketches are useful for capturing information quickly and directly.

Tables

Tables allow geographers to present and compare data by organising it under different headings. Tables can be useful for presenting information over a range of time periods or locations.

Source GT.27 This table, based on data gathered by geographers in 2006, shows the change in area of seven glaciers (A–G) on Mount Kilimanjaro, 1912–2003.

<table>
<thead>
<tr>
<th>Year</th>
<th>Glacier Area A</th>
<th>Glacier Area B</th>
<th>Glacier Area C</th>
<th>Glacier Area D</th>
<th>Glacier Area E</th>
<th>Glacier Area F</th>
<th>Glacier Area G</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1912</td>
<td>5676</td>
<td>3</td>
<td>27</td>
<td>5011</td>
<td>811</td>
<td>372</td>
<td>158</td>
<td>12058</td>
</tr>
<tr>
<td>1953</td>
<td>3829</td>
<td>0</td>
<td>16</td>
<td>2156</td>
<td>493</td>
<td>181</td>
<td>0</td>
<td>6675</td>
</tr>
<tr>
<td>1976</td>
<td>2440</td>
<td>0</td>
<td>1409</td>
<td>209</td>
<td>113</td>
<td>0</td>
<td>471</td>
<td>3305</td>
</tr>
<tr>
<td>1989</td>
<td>1950</td>
<td>0</td>
<td>1168</td>
<td>147</td>
<td>90</td>
<td>0</td>
<td>3355</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>1364</td>
<td>0</td>
<td>1025</td>
<td>132</td>
<td>49</td>
<td>0</td>
<td>2510</td>
<td></td>
</tr>
</tbody>
</table>

Geographical information systems (GIS)

A geographical information system (GIS) is a way of collecting, storing, presenting and using geographical data. GIS encompasses collecting geospatial data – real-world distance between landmarks, water depth, height and width of buildings, layout of streets and suburbs – and presenting it through digital means. A car’s GPS uses GIS data to allow you to navigate through the real world, using data that has been gathered using computer technology. GIS has many different applications and is used for planning, telecommunications, transport and logistics, to name just a few.

Source GT.29 Geographical information systems gather and present real-world geographical data using computer technology.
Collecting and evaluating geographic photographs

Geographers take photographs with the purpose of capturing a specific visual reference. This skill in geography is learning to capture a scene on camera that shows exactly what you want it to. You will not necessarily be taking the prettiest picture – you will be taking the picture that is relevant to your inquiry. Then, you can show the key features by adding notes or labels to your photograph. This is known as annotating the photograph. Annotating your photograph will help with your evaluation of the subject, too.

Step 1 Prepare for your session. Read the manual for your camera and get to know what your camera is capable of doing. Learn about exposure and how to frame your subject – there are plenty of tips online to help you with this. It is important to hold your camera steady, or you can practice using a tripod. This is especially useful when collecting photographs of the same place over a period of time.

Step 2 Decide on your subject and ensure you are photographing the relevant features you want to feature. Select the features of the landscape that show important aspects of your geographical inquiry. Remember your key inquiry question. It could be something like, ‘How does tourism affect this environment?’ If so, ensure you include evidence of any impact, like rubbish left along a shoreline. In the case of the photo shown here, the key inquiry question was, ‘Are the glaciers becoming smaller because of natural or human factors?’

Step 3 Evaluate photo drafts as you go. Remember that your photograph is part of your geography fieldwork or study, and ensure that your photographs include the aspects you want to show. You might need to try photographing your subject from different angles, or from above or below it to capture what you are after.

Step 4 Annotate your photographs, remembering to focus on the topic of the inquiry. Write short labels that include the key features of the landscape. Keep your labels neat, relatively short and relevant to your inquiry. Note any observations you have and possible causes for changes or damage you note in the environment.

Step 5 Place your labels, taking care not to obscure important parts of the photograph. Space the labels around the photograph without making them too cluttered. Avoid having the lines from the labels crossing each other. If you think you have too many labels, go over them again and delete any you think aren’t really relevant to your inquiry question.

Apply the skill

1. Prepare for a geographic photo session. Decide on a subject and head out to a natural environment such as a forest, stream or coastline with your camera. Evaluate your photographs as you go to ensure you are collecting the information you are seeking.

2. Annotate your photographs following the steps listed above. Choose your best three photos and set up a digital display on the school computer network or print them out and set up a wall in your classroom as a photo gallery.

Source: GT.30 A geographic photograph demonstrates a particular aspect of a place or environment, like this one of the Mount Kilimanjaro glacier area.

Source: GT.31 An annotated image of Mount Kilimanjaro.
Interpreting, analysing and concluding

Once you have collected, recorded, evaluated and represented your information, it is time to make sense of it all so that you can reach some conclusions about the geographical questions that began your inquiry. Geographers look for order, diversity, trends, patterns, anomalies and relationships in their information. It can often help to classify information by sorting it into groups.

Using models to identify trends, patterns and relationships in geographical data

There are a number of methods and models that geographers use to help them during this stage of their inquiries. These include the:
• PQE method
• SHEEPT method.

Using the PQE method

PQE is a tool used by geographers to describe the data they have gathered (particularly on maps) and to look for patterns in this data. The letters PQE stand for pattern, quantity and exceptions.

P – Pattern

In this step, you need to give a general overview of any patterns you may identify. When looking at any form of data, look for things that stand out or form patterns. A pattern may be a group of similar features on a diagram, a concentration of a particular colour or feature on a map, or a particular shape that is created by data on a column graph. For example, when looking at a map of Africa (see Source GT.32) you might say, ‘the forests seem to be located mainly in Central Africa and Southern Africa’.

Q – Quantify

In this step, you need to add specific and accurate information to define and explain the patterns. Quantifying involves using statistics, amounts, sizes and locations to give specific details. For example, rather than just saying, ‘The most forest is located in the centre of the continent’, you would need to quantify this statement. You might say instead, ‘240.3 million hectares of forest has been recorded in Central Africa, compared to 35.4 million hectares in East Africa’.

E – Exceptions

In this step, you need to identify everything that does not fit your patterns. Often, you may find that there are things in your data that do not fit into a pattern you have identified. These are called exceptions. They also need to be identified and quantified. For example, you might say ‘There are also forest regions located in North Africa and West Africa’.

Using the SHEEPT method

SHEEPT is a tool used by geographers to help them consider the many factors that may contribute to the patterns identified in their data. When you are examining issues related to your inquiry, it is useful to think about them in terms of these six factors and rank them in order of importance. This will help you reach your conclusions. The letters SHEEPT stand for:

• social (S) – factors relating to culture and population
• historical (H) – factors relating to past events
• environmental (E) – factors relating to the natural environment (including climate, landforms and vegetation)
• economic (E) – factors relating to the earning or spending of money (including income earned from industry and tourism and the cost of building a dam or highway)
• political (P) – factors relating to governments (including laws, regulations and policies)
• technological (T) – factors relating to the availability and use of different types of technology (including the development of greener technologies, alternative energy sources and GIS).

Check your learning GT.4

Remember and understand

1 What do the letters PQE stand for?
2 What do the letters in SHEEPT stand for?

Apply and analyse

3 Look at Source GT.32. Use the PQE method to think about Africa’s deserts.
 a Can you identify a pattern?
 b Can you quantify this pattern?
 c Are there any exceptions in this pattern?

Evaluate and create

4 Conduct your own Internet research on the way in which Mount Kilimanjaro is managed and use the SHEEPT method to think more closely about the factors that impact on it,
 a List at least one point for each of the SHEEPT factors.
 b What conclusion(s) can you make about the way in which Mount Kilimanjaro is managed?

5 Create a colourful and informative pictogram to help you remember what SHEEPT stands for using an image or picture for each of the ‘SHEEPT’ letters.
Distinguishing between quantitative and qualitative data
Primary and secondary data provide either quantitative data or qualitative data. Quantitative data includes anything that can be recorded as numbers (for example, Uluru is 3.6 kilometres long and 1.9 kilometres wide and has a circumference of 9.4 kilometres). Qualitative data, on the other hand, includes anything that can be recorded in words (for example, Uluru, one of Australia's best-known natural landmarks, is very large).

The PQE method uses mainly quantitative data. Examples of quantitative data include:
- climate and temperature statistics
- tourist numbers
- population figures (including birth and death rates)
- types and amounts of food grown
- plant and animal species and wildlife in certain areas
- forest clearance rates
- numbers of people killed in natural disasters
- numbers of volcanic eruptions and earthquakes.

The SHEEP method uses mainly qualitative data. Examples of qualitative data include:
- opinions
- points of view
- personal stories
- likes and dislikes
- feelings.

Good geographical inquiries will always be based on a combination of primary and secondary data that is both quantitative and qualitative. Even though qualitative data is an important part of any geographical inquiry, quantitative data is considered to be more valuable because it is less open to personal interpretations and can be more accurately represented in graphs and charts.

Before you move to the next stage of your inquiry, it is important to check that you have recorded all your data without errors and that it is balanced and fair. Your data should not reflect your personal opinions, emotions or attitudes; instead it should present the facts in a clear and concise way.

Using other methods to interpret geographical data
Analysing geographic photographs
Landscapes can be photographed from several different angles depending on the position of the camera at the time the photograph was taken. Each angle makes some features of the landscape easier to see and interpret than other features, and so you need to carefully consider at which angle the photograph has been taken.

Analysing satellite images
A satellite image is taken from space. It allows us to see large areas of the Earth's surface. These images are often used to investigate patterns such as the streams and rivers that radiate from Mount Kilimanjaro. It is difficult, however, to see smaller features of the environment.

Analysing false colour images
You may have heard the terms 'false colour image' or 'false colour map' before. The term 'false colour' does not mean the colours used in an image are incorrect, it just means different colours have been used to make the image more easily interpretable. The cartographer or person working on the image has chosen colours that some make aspects easier to see or understand than a normal ‘natural’ photograph or map would be.

The colours used in a false colour image can be quite exaggerated and unnatural-looking. This is because the colours of the natural features are too similar to demonstrate a particular point or aspect. If someone is trying to show where a muddy brown river meets a brown-coloured riverbank where there are brown rocks and some brownish shrubs, they might decide to use false colour to clearly show where the different elements are. In that case, they may decide to make the shrub areas bright green, the river neon yellow and the rocks bright red, leaving just the river bank brown.

You should examine the accompanying legend to interpret the colours used in a false colour map.

Check your learning GT.5
Remember and understand
1. What is an oblique aerial photograph?
2. What are some of the advantages and disadvantages of using a vertical aerial photograph?

Apply and analyse
3. Which type of photograph would you take on a field trip?
4. Some geographers are very interested in the amount of snow and ice on Mount Kilimanjaro, as it has been gradually declining for several decades. Which type of photograph do you think would be most useful to show the decline of the total area of the mountain's snow and ice?

Evaluate and create
5. The oblique aerial photograph (Source GT.34) was taken in 1991 and the ground level photograph (Source GT.33) was taken in 2009.
 a. How has the mountain top changed in this time?
 b. With a partner, discuss some geographical questions you could ask to investigate why the mountain has changed in this time. Don’t worry about the answers, just concentrate on writing some good questions.
 c. Share your questions with the class. List three questions from the class discussion that you think could be the beginning of a geographical inquiry.
 d. Where could you find information to help you investigate these questions?
Communicating

During a geographic inquiry you may discover something new that other people should know about. It is important that you be able to communicate your findings clearly and effectively. There are several ways of doing this and you should select the method that best suits your audience and purpose:

- oral methods, such as reports, discussions and debates
- audio methods, such as radio reports
- graphical methods, such as graphs, annotated photographs, sketches and satellite images
- pictorial methods, such as annotated visual displays or PowerPoint displays
- maps
- written methods, such as essays or other text-based presentations.

During a geographic inquiry you may discover something new that other people should know about. It is important that you be able to communicate your findings clearly and effectively. There are several ways of doing this and you should select the method that best suits your audience and purpose:

- oral methods, such as reports, discussions and debates
- audio methods, such as radio reports
- graphical methods, such as graphs, annotated photographs, sketches and satellite images
- pictorial methods, such as annotated visual displays or PowerPoint displays
- maps
- written methods, such as essays or other text-based presentations.

Step 3 Find the requirements of your presentation. Your teacher will tell you how long your presentation is expected to be and what key points need to be covered. It is important that you plan your presentation in line with these requirements. For example, if you are required to talk for 10 minutes, you might like to present around 10 PowerPoint slides and talk to each one for around one minute. Before you start creating your PowerPoint presentation, it is really useful to sketch out a rough plan of what you want to cover on each slide. Have a practice on your own following your plan. Time how long it takes you to cover the information you plan to fit on one slide. Plan the rest of your presentation using this as a guide.

Step 4 Once you have worked out the length of your presentation and the content you need to cover, it is time to create your slides. If you are not familiar with PowerPoint, there are plenty of online guides to assist you. Here are some tips to help you create a clear and visually engaging PowerPoint presentation:

- Be sure you present the content in clear, concise dot-point form, not huge slabs of information in paragraph form. You do not need to put all your findings up on the screen.
- Do not fill up your slides with a lot of random pictures that only loosely relate to the content. Include visuals that relate to the content on that particular slide.
- A common mistake is to have objects and text moving on the screen in a way that just distracts the audience. Use graphics, sound, video, animations and transitions only if they add value to the point being made.
- Use a design that ensures your audience can clearly see and read the slides. You need enough contrast between the text colour and the background colour on the slide, and make sure your font size is large enough.

Step 5 Prepare a set of cue cards. When delivering an audiovisual presentation to an audience do not just stand up and read out the text on each slide. Rather, you should be talking in a way that develops and expands the points on each slide. Carefully plan in advance what you are going to talk about during each slide. Record this plan on cue cards, and refer to these cue cards during your speech to remind you of what to say. Cue cards are also a great support to have if you are prone to nerves!

Step 6 Practise your presentation. You can do this on your own, or in front of a friend or family member. You might feel a bit silly at first, but practising will help you perfect your timing and get you used to talking through the key points of your presentation using your cue cards and slides to support you.

Deliver your presentation

Step 7 Before delivering your presentation, be sure that you’re confident that the technology you’re using is in good working order. Prior to class, check that everything is working as it should and that the screen you are projecting onto is ready and clearly visible to the audience. If your PowerPoint presentation contains any audio or video footage, check that your speakers are working and audible to the audience.

Step 8 Deliver your presentation by working through the slides in the same way you practised. Here are some tips to help you deliver the best PowerPoint you can:

- Speak clearly – not too fast, not too slow. Vary your tone and pitch to make your presentation more interesting.
- One thing at a time – what is on the screen should be the thing you are talking about. Your audience will quickly read every slide as soon as it is displayed. If there are four points on the slide, they will have read all four points while you are still talking about the first point.
- Make eye contact with different members of your audience. Do not just look down at your cue cards!

Step 9 Invite the audience to ask questions and do your best to answer them correctly. If you do not know the answer, or are unsure, don’t just make something up on the spot. You are better off being honest and offering to answer any questions at a later stage once you’ve researched the answer.

Apply the skill

1. Prepare and deliver a PowerPoint presentation on an issue of geography that you find interesting. It could be the local issue that you researched in the previous section, or something you have noticed in the news. Ensure you include some interesting visual elements, such as photographs or graphs, as well as your key points.

2. Apply and analyse
 1. What do you most enjoy about other students’ oral presentations? What do you least enjoy?
 2. Remember and understand
 1. Why is communicating an important part of a geographical inquiry?
 2. List three ways you could communicate the findings of your geographical inquiry.
 Apply and analyse
 3. What do you most enjoy about other students’ oral presentations? What do you least enjoy?
Reflecting and responding

Reflecting

The final steps in completing a geographical inquiry are to reflect on the results of your inquiry and the methods that you used. This is an essential step as it allows you to learn important lessons from any mistakes that you have made and apply these lessons in your next geographical inquiry. There are several ways to reflect on your geographical inquiry. Reflecting involves looking at what you have learned, thinking about how it was learned, and asking critical questions about the way your geographical inquiry was conducted. One of the best methods to help you reflect is to complete a self-evaluation checklist (see Source GT.38).

Responding

As well as reflecting on the ways in which you conducted your inquiry, you also need to respond to what you found out. You may even decide that you need to recommend some action based on what you found.

Geographers often use the information gathered and analysed in their inquiry for a specific purpose. This could be to report on an issue and educate people, to raise awareness of a potential problem, or to lobby local, state or federal government about a particular concern. This can be done via various methods, from presenting official reports or studies, to using social media and starting an online petition. The work you do as a geographer can contribute to your environment, and responding and acting is an important part of this work.

If the results of your geographical inquiry lead you to recommend a plan of action, there are some important things to consider.

• Does it bring more economic benefits than it costs? Is it affordable in both the short term and the long term?
• Does everyone affected by this plan of action benefit from its outcomes or just a few people?
• Is it environmentally sustainable? Does the plan impact in a negative way on the natural environment and natural processes?

Case study

A geographical inquiry conducted on the lower slopes of Mount Kilimanjaro found that many schools lacked a reliable supply of clean water for sanitation. Based on this inquiry, the members of several non-government organisations along with the local villagers laid hundreds of metres of new pipes and installed tanks and taps so that children at the schools could wash their hands before preparing food (see Source GT.39).

Source GT.39 Children at school near Mount Kilimanjaro using newly installed taps to wash their hands before preparing food.

Check your learning GT.7

Remember and understand

1 A self-evaluation checklist is one way to reflect on a geographical inquiry. What are two other ways?
2 Why are the findings of a geographical inquiry often useful to the community?

Apply and analyse

3 What geographical questions do you think began the inquiry that resulted in the new taps in the Tanzanian school shown in Source GT.39?
4 Why is it important that an action plan for change considers the issue of sustainability?

Evaluate and create

5 Create a checklist to assess your map-drawing skills.
GT.3 Fieldwork in geography

Why is fieldwork important?

A historian studying a period in the past will try to find primary sources of information such as letters or diaries to better understand that period. For geographers, the field is an essential primary source of data. Books, websites and maps can give you some information about a particular place but they are usually secondary sources of information. To really understand a landscape or issue you need to go and see it for yourself.

A field trip can be a fun and exciting experience as you spend time with your classmates in an interesting place. As well as being fun, field trips are an essential part of your geography course. This is because fieldwork:

- helps you to better understand how the world ‘works’ as it builds a bridge between what you learn in a classroom and the world outside that classroom.
- teaches you new skills, particularly in collecting information. Many of these skills, such as surveying and digital mapping, are in demand in the workplace.
- allows you to learn about the world in a new and different way. Not everyone learns well by reading books or answering questions in the classroom. Many students learn more by completing practical, hands-on activities such as fieldwork.
- gives you the opportunity to discover how other people feel about their environment and to compare this to your own values and ideas about your world.

- requires you to be organised and to work cooperatively with other people.

The skills associated with fieldwork

The aim of all fieldwork is to enable you to develop the skills of observation, information gathering, analysis and interpretation of different forms of data and communication of your results. The types of fieldwork you conduct will differ according to your chosen topic and the fieldwork site. All fieldwork is activity-based and inquiry-based. You will be:

- identifying different types of environments and the features within them
- describing what you see around you in geographic terms
- recording data from different sources
- sampling things like water quality and wind speed
- investigating why things are where they are
- comparing different features to see if there is a pattern
- calculating amounts such as water flow, number of different species of plants and animals, visitor numbers
- analysing different forms of data
- forming a more complete picture of the area you are studying
- communicating your findings.

All these activities are aimed at developing and improving your geographic skills and understanding.

Fieldwork locations and inquiry questions

Fieldwork can take place in many locations and for a wide variety of purposes. The best locations tend to be where change is happening before your eyes. Rivers and coasts are popular fieldwork locations because the constant movement of water in these places changes the natural environment, often resulting in a response from people. Shopping centres, parks and city streets are also popular because the constant movement of people creates patterns, flows and changes. Source GT.41 provides examples of fieldwork locations and inquiry questions that can be the beginning of an investigation at some of these locations.

Conducting successful fieldwork

Fieldwork is a type of geographical inquiry, so whenever you take part in fieldwork you will need to follow the stages that are outlined in this toolkit, namely:

Stage 1 Observing, questioning and planning

Begin by looking at an issue or location and compile a set of related inquiry questions that you would like to answer. There are some suggestions in the previous table to get you started. Plan what information you will need to answer your key questions, how you will collect it and what equipment and skills you will need.

Stage 2 Collecting, recording, evaluating and representing

Plan your fieldwork so that you can collect the evidence and data that you will need. There is a range of geographic skills that are well suited to fieldwork. These include taking photos, drawing field sketches, conducting surveys and collecting data such as stream and pedestrian flows. You need to consider ethical principles such as people’s right to confidentiality and the right to refuse to take part in a survey. If your class is planning a field trip to a natural environment such as a forest or beach, you will need to ensure you do not damage the environment by trampling on plants or animals, or by dropping litter.

Stage 3 Interpreting, analysing and concluding

Analyse the evidence you have collected and look for patterns or clues that will help you to answer your inquiry questions. This is usually done in the classroom where you can more easily draw maps and graphs to interpret your information and reach some conclusions.

Stage 4 Communicating

Communicate what you have found to an audience in the form of a written report, an oral presentation or an annotated visual display (AVD).

Stage 5 Reflecting and responding

Think about your fieldwork findings and reflect on ways to improve your investigation process. Finally, decide on a course of action, if this is appropriate. This should take into account environmental, economic and social factors.
A fieldwork example: Inner city renewal

In the following example, the Year 10 geography class at Gumtree College are investigating an urban renewal project near the central business district (CBD) in their capital city. Fifteen years ago the area was a vast neglected industrial site of old docks, cranes, sheds and railway lines. It has now been transformed into a residential and commercial hub with apartment blocks, office buildings, parks, shops, theatres, television studios and a major sporting arena. The Gumtree College students are investigating this area as part of their studies of environmental change and management of an urban environment.

Stage 1 Observing, questioning and planning

Prior to their fieldtrip, the students used the Internet and a promotional DVD to learn more about the area. Based on these observations they brainstormed a series of geographical questions that could form the basis of their inquiry. These included:

• What is/are the cause(s) of change in this region?
• How has this region changed over time?
• What are the consequences of change on the built environment and on the natural environment?
• How are environmental changes in this region managed at present?
• How can environmental changes in this region be better managed in the future?

After some discussion, the students decided on the third question, but decided to modify it slightly to make it easier to study and measure. Their inquiry question became ‘What are the consequences of change in this region on the built environment?’

It was decided that the class would spend one full day in the region after travelling into the inner city by train. Following the field trip they would then spend time in class preparing a field report.

The students spent some time before the field trip planning what information they could collect and observe for their inquiry. They decided that they could investigate previous land uses in the area by accessing old photographs and maps. Then, while on the field trip, they would look for examples of changing land uses. They printed some of these photographs and took them to the area where they visited on their field trip. Activities they completed on the field trip included:

• completing a field sketch of their case study area
• mapping examples of land use changes on an outline map of the region. Included on the map were examples of buildings that have retained their original use, old buildings that have changed use, new buildings and areas cleared for new buildings.
• selecting examples of change as case studies. Some groups of students chose a new train station that had replaced an old one, some chose a new sports stadium that had been built on an area previously used for railway yards, and another group selected a goods shed that had been converted into restaurants. At each site students listed the changes they observed and the impacts of these changes on surrounding areas. They also discussed the possible reasons for these changes. Some completed a field sketch of their case study.
• constructing an overlay map to compare an old map of the region with the map they drew while on the fieldtrip. They discovered that the shape of the river banks had changed little and that previous land reclamation areas had remained the same over the last 50 years. The rail yards had been moved to make way for the new sports stadium and the footprint of the new train station was slightly larger than the previous station. Many goods-handling areas and buildings from the previous industrial land use had been replaced with new apartment buildings and a large park. Roads from the CBD had been extended into the new precinct and new tram lines had been added.
• annotated their photographs of their case study sites to show how these sites had changed over time and the impacts of these changes on other areas (see Source GT. 44). Students concluded that change had been uneven, with some areas changing little, while others had undergone large-scale and dramatic changes. They also concluded that one of the driving forces for these changes has been the growth of the population of the city, increasing the demand for inner-city housing.
• concluded that the changes in this area have been largely positive as the area had become an attractive wasteland prior to the urban renewal project. Some students felt that the area could be improved to make it more attractive for people to live there. They suggested that a school would be an asset in the area, as would more open spaces and recreation facilities like a water park or skate park.

Stage 2 Collecting, recording, evaluating and representing

The students researched the region and collected a series of photographs that showed the ways in which the region was used in the past and how these uses have changed over time. They found the National Library of Australia website (http://trove.nla.gov.au/) particularly useful. They printed some of these photographs and took them to the area where they visited on their field trip. Activities they completed on the field trip included:

• taking geographic photographs and comparing these to old photographs (see Source GT.43). The photographs they took included images of a new train station, new sports stadium, new roads and new apartment buildings. Some students also photographed an old goods shed and old wharf facilities.
• mapping examples of land use changes on an outline map of the region. Included on the map were examples of buildings that have retained their original use, old buildings that have changed use, new buildings and areas cleared for new buildings.
• selecting examples of change as case studies. Some groups of students chose a new train station that had replaced an old one, some chose a new sports stadium that had been built on an area previously used for railway yards, and another group selected a goods shed that had been converted into restaurants. At each site students listed the changes they observed and the impacts of these changes on surrounding areas. They also discussed the possible reasons for these changes. Some completed a field sketch of their case study.
• constructing an overlay map to compare an old map of the region with the map they drew while on the fieldtrip. They discovered that the shape of the river banks had changed little and that previous land reclamation areas had remained the same over the last 50 years. The rail yards had been moved to make way for the new sports stadium and the footprint of the new train station was slightly larger than the previous station. Many goods-handling areas and buildings from the previous industrial land use had been replaced with new apartment buildings and a large park. Roads from the CBD had been extended into the new precinct and new tram lines had been added.
• annotated their photographs of their case study sites to show how these sites had changed over time and the impacts of these changes on other areas (see Source GT. 44). Students concluded that change had been uneven, with some areas changing little, while others had undergone large-scale and dramatic changes. They also concluded that one of the driving forces for these changes has been the growth of the population of the city, increasing the demand for inner-city housing.
• concluded that the changes in this area have been largely positive as the area had become an attractive wasteland prior to the urban renewal project. Some students felt that the area could be improved to make it more attractive for people to live there. They suggested that a school would be an asset in the area, as would more open spaces and recreation facilities like a water park or skate park.

Stage 3 Interpretation, analysing and concluding

After completing their fieldwork, students returned to the classroom to make sense of the information they had collected and recorded. They used this information to make a series of conclusions about changes to the built environments that have occurred over time. In order to do this, they:

• identified examples of the consequences of change on the built environment. They noted that the area had become a commercial district.
• completed a field sketch of their case study area.
• annotated their photographs of their case study sites to show how these sites had changed over time and the impacts of these changes on other areas.
• concluded that the changes in this area have been largely positive as the area had become an attractive wasteland prior to the urban renewal project. Some students felt that the area could be improved to make it more attractive for people to live there. They suggested that a school would be an asset in the area, as would more open spaces and recreation facilities like a water park or skate park.
Stage 4 Communicating
Students completed field reports based on their geographical inquiry. Each student was required to complete a sketch book that included a range of visual and written material. Examples of visual material included an overlay map to show change over time and a range of annotated photographs. Written material included reports on the ways in which the area has changed over time and a description of the ways in which it is expected to change over the next twenty years.

Groups of students prepared presentations on their selected case studies. Most used ICT programs such as PowerPoint and Prezi to present photographs of their site. These were posted on the school website and discussion forum, and several parents from the school community added their own memories about the region as it was in the past. The class discussed the differences and similarities between each of the case studies.

Stage 5 Reflecting and responding
Following the submission of their field reports students reflected on their findings and the methods they used to reach conclusions. They decided that the key inquiry questions they had chosen were a good one although several students commented that it was difficult to work out why change had occurred in this place over time. They completed a self-evaluation checklist to reflect on the findings of their fieldwork (see Source GT.38) and the ways in which they could improve.

Many students felt that the overlay map was a very good way to demonstrate how an area has changed over time and a description of the ways in which it is expected to change. It is one of the many skills that geographers have and the usefulness of these skills in a wide range of careers.

Many geographers find that their skills and expertise are in such demand that they can easily find employment all around the world. There are many jobs and careers that are linked to your study of geography at school. Some of these are listed in Source GT.46.

Careers in geography

In recent years there has been a marked increase in the number and range of jobs and careers that are linked to geography. This is likely to continue well into the future, due to a growing awareness of how important it is to understand our fragile environment. Many employers are also becoming more aware of the many skills that geographers have and the usefulness of these skills in a wide range of careers.

Many geographers find that their skills and expertise are in such demand that they can easily find employment all around the world. There are many jobs and careers that are linked to your study of geography at school. Some of these are listed in Source GT.46.

Working indoors
Not all geography jobs involve working outside. New information and communication technologies (ICT) have increased the number and range of geography careers that are completed indoors. Many of these are involved with planning future strategies and changes to the built environment. Planners are concerned about the ways in which different parts of a suburb or city fit together and the links between them. Like many geographers, planners increasingly use GIS systems and other ICT applications. A relatively new geography career is using geomatic engineering. This uses GPS, GIS, 3-D computer images, surveying, satellite images and photos in the field of engineering. It is one of Australia’s fastest growing ICT fields.

Career profile: Lucy Johnson – Urban Planner
Lucy Johnson uses her geographic skills to help create and manage liveable spaces in a city council planning department. Residents and developers who wish to change the ways in which their properties are used must apply to Lucy and her fellow planners for permission. She assesses every proposal carefully to ensure that it does not adversely affect the natural environment or other local residents. ‘Some proposals are met with great opposition from residents, who are extremely passionate about preserving their streetscapes and the character of their neighbourhood,’ says Lucy. It is part of her job to find a balance between development and the protection of the character of the neighbourhood.

Lucy believes that, ‘...town planning is crucial, not just in creating physical environments, but in sustainably changing the way in which we use land and accommodate population growth. Our resources are finite and we must ensure that future generations can..."
live and prosper just as we do.’ She also believes career opportunities in her chosen field are vast, varied and increasingly more important.

Sharing knowledge

Geographers are good communicators who are used to working in teams to solve problems and propose solutions. Many geographers have used these and other skills to share their knowledge with the community. There are many career opportunities in education, including teaching in schools and universities – even overseas. Other geographers work in publishing, as writers, journalists, editors or cartographers.

Sharing knowledge

Geographers are good communicators who are used to working in teams to solve problems and propose solutions. Many geographers have used these and other skills to share their knowledge with the community. There are many career opportunities in education, including teaching in schools and universities – even overseas. Other geographers work in publishing, as writers, journalists, editors or cartographers.

Exploring new ideas

The inquiry and research skills that are part of your geography course (including observing, questioning, interpreting, analysing and communicating) are in great demand in many industries. Many geographers are also researchers who explore new ideas and propose new ways of thinking about the world in which we live. These geographers are making new and exciting discoveries in areas such as climate change, reducing the impacts of disasters, the spread of diseases and food security. They are also in demand with mining and oil companies around the world (see Source GT.49)

Source GT.49 These geographers are using a 3D visualisation and GIS to predict the most productive locations for oil drilling.

Check your learning GT.9

Remember and understand

1. Why is the number of careers in geography likely to increase in the future?
2. List three jobs you could do as a geographer if you wanted a job where you could explore new ideas.

Apply and analyse

3. What geography careers in Source GT.46 are connected to the concept of sustainability?
4. What skills do geographers have that make them useful in helping communities recover from natural disasters?
5. Why do you think a background in geography would be useful for an archaeologist?

Evaluate and create

6. Select one of the careers from Source GT.46 that interests you. Research this career and prepare a one-page fact sheet that includes at least one picture. Include answers to the following questions in your career fact sheet.
 a. What qualifications are needed in this career?
 b. How does someone working this career use geographic skills and concepts?
 c. What aspect of this career do you think is most attractive?